
entering into the solution for the plane jet is expressed through the integral characteris- 
tics of the swirled fan jet in a way analogous to (2.8) and (2.10): 

where (see [2]) 

E .~ 31 
N = ~ l / l + .~,  zo = E~o, 

E - - 2 . ~ p X o , .  u (Xo, Y) U (xo, Y) dy dy; 
0 

oo I" 

,b 

In conclusion, we note that all the solutions found earlier for free swirled fan jets are 
obtained as particular cases from the results of the present work. 
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STABILITY OF POISEUILLE FLOW IN AN ELASTIC CHANNEL 

O. Yu. Tsvelodub UDC 532.5 

The stability of a laminar boundary layer at a surface of the membrane type has been 
analyzed in [I, 2], while the stability of Poiseuille flow between membranes are analyzed in 
[3, 4]. Walls with a linear relationship between the perturbation of the pressure and the 
normal deformation of the surface were taken as the channel boundaries in [5]. The stability 
of the profile V = sin y (0 ~ y ~ ) was analyzed numerically in [6]. The stability of Poi- 
seuille flow in a channel whose walls are elastic plates is studied in the present report. In 
contrast to [3, 5, 6], pulsations of the friction at the channel walls are taken into account 
along with pressure pulsations, just as in [4]. It is shown that a significant reorganization 
of the regions of instability occurs when they are allowed for. A region of instability is 
found which exists for any finite Reynolds number. 

A stream whose velocity profile is V ~ V x = 1 -- y2 in a channel with walls y = • is 
analyzed (Fig. i). For the normal and tangential displacements of the upper plate we have 
[7] 

y=~ ~ ~ ~  

GO -- 

Fig. I 
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Po ha~'~'Ot2 = --Eh~/[12( t - -  ~  ''0x~ ~-P  --~uy; . (1) 

poha2~Ot 2 ---- Eh:(l -- a2)aF~/Ox ~" + ~xu, (2) 

where  ~ and ~i a r e  t he  n o r m a l  and t a n g e n t i a l  d i s p l a c e m e n t s ,  r e s p e c t i v e l y ,  o f  a p o i n t  o f  t he  
p l a t e  f rom the  p o s i t i o n  i n  a s t a t e  o f  r e s t ;  Po and h a r e  t h e  d e n s i t y  and t h i c k n e s s  o f  t he  
p l a t e ;  E i s  Y o u n g ' s  modu lus ;  o i s  t h e  P o i s s o n  r a t i o ;  p -  ~YV and Txy a r e  t h e  no rma l  and t a n -  
g e n t i a l  s t r e . , ; ses  c a u s e d  by t h e  p u s l a t i o n s  i n  t h e  v e l o c i t i e s - o f  t he  p e r t u r b i n g  m o t i o n .  The 
e q u a t i o n s  a r e  w r i t t e n  i n  d i m e n s i o n l e s s  form and t he  c o r r e s p o n d i n g  q u a n t i t i e s  a r e  n o r m a l i z e d  
t o  the  h a l f - w i d t h  o f  t he  c h a n n e l ,  t h e  d e n s i t y  o f  t he  f l u i d ,  and t h e  v e l o c i t y  Vm a t  t he  a x i s  
o f  t h e  c h a n n e l .  I n  the  l i n e a r  a p p r o x i m a t i o n  t he  c o n n e c t i o n  be tween  ~ and $ and t h e  components  
o f  t he  p e r t u r b a t i o n  v e l o c i t y  ha s  t he  form 

 /at (3) 
~.,"at = ~ -F y ' ~  y = ~ I .  (4)  

All the perturbed quantities are sought in the form 

A(x, ~7, t) ---- A(L,) exp [ia(x - -  ct)], (5) 

where  a i s  t h e  wave number ;  c = c r + i c  i i s  t h e  complex v e l o c i t y .  

N e g l e c t i n g  the  n o n l i n e a r  t e rms  in  t he  e q u a t i o n s  o f  mo t ion  o f  the  f l u i d  and u s i n g  ( 1 ) - ( 5 )  
f o r  t he  a m p l i t u d e  o f  the  s t r e a m  f u n c t i o n  q(y)  o f  t h e  p e r t u r b i n g  f low we o b t a i n  t h e  Orr -Som-  
m e r f e l d  e q u a t i o n  

~iv _ 2 ~ p , ,  + ~ = i~ Re {(V - -  c)(~" --  ~2~) _ r " ~ } .  (6) 

We w r i t e  the  b o u n d a r y  c o n d i t i o n s  a t  t he  uppe r  p l a t e  as  
I I o o t q : ' "  = -- io~ Re {(polz~-c - -  f~ i , 'c)~ @ cr#' v V ' r f }  - -  oor ; ( 7 )  

~' + ,~'V',c = - - [ q : "  + (0,3 + V"..c)q~]/[io~ Re (,OoI~C - -  K/c)], U = J-, (8)  

where Re = YmL/v, K = Eh3/[12(l -- c=)], Kx-- Eh/(l--~=). In the calculations E and h were 
taken as constant, by analogy with [4-6], and therefore in the figures presented below Re 
varies only by virtue of the variation of v. 

Since K:L >> K for the plates, in the majority of cases the longitudinal displacements 
can be neglec.ted. Then the conditions at the boundary have the form 

O ~ t (p"" = --i~, Re(poha2c - -  Kod/c)~) -i- occ-(~ ; (9) 

~p' + q~V':'c = 0, y = 1. (10)  

If, in addition, one does not take ~yy into account in (I) [2, 5, 6], then (9) is re- 
written in the form 

~p'" = - - i~  Re(p0h~'~c - -  K~/c )q )  + a-~ ,', y = t. (11) 

Henceforth, we will be confined to the consideration of perturbations which are symmetric 
relative to q0. At the axis of the channel we have 

~' (0)  = ~ ' " ( 0 )  - -  O. ( 1 2 )  

�9 I n  t h e  n o l u t i o n  o f  t h e  g i v e n  b o u n d a r y  p r o b l e m  t h e  m a i n  i n t e r e s t  i s  i n  f i n d i n g  t h e  n e u -  
t r a l  curves (c i = 0) separating the regions of growing perturbations (c i > 0) from the re- 
gions of damped perturbations (ci < 0). 

Let Re << i. In this case, regardless of the form of the profile of the main flow, the 
solution of the boundary problem (6), (9), (i0), (12) can be obtained in the form of a series 
with respect to Re: 

= q'o @ R e % . @ . . . ;  (13) 

c = c o -~- t / ec  I + . . .  (14) 

Proceeding by analogy with [8], we substitute (13) and (14) into these equations, and, 
equating the coefficients of equal powers of Re, for the zeroth approximation we obtain 

% = c h a y - - y t h ~ s h ~ y ;  (15) 

Co = V'(l)/sh~a. (16) 
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TABLE 1 

Re~ r I "r  ci 

I 

Source 

[11] 5772,23 
Present work 5772,2 

1,02041 [ 0,26399 
1,02 0.26391 

--0,4. t0 -9 
0 

It follows from (16) that the axis Re = 0 is a neutral curve and, for small Re, perturba- 
tions propagate upstream (co < 0). For an analysis of the stability of these perturbations 
one must consider the next term of the series (14). After transformations we obtain 

c,  = ico/(2a3V ') {(a ~" --  0.Sa sh 2a) L (Co) - -  [~s/3 - - (0 .75V'§  sh 2~ + 

+ asV ' cth a + (2.25 =- 1.125 sh 2zt:'a) sh ~ a _ (1.5V' + 1) .~- - -  0.5 sh-~2~}, (17) 

where L(co) = a 2(pohco -- Ka2/co). 

An analysis of the expression (17) shows that c, is a purely imaginary quantity and an 
a, exists such that 

> 0  for ~ < a , ,  . 
Im(cl)  = for a = a , ,  

| < 0  for a > a , .  

Thus,  a ,  i s  a b r a n c h i n g  p o i n t  o f  t he  n e u t r a l  c u r v e .  The a p p e a r a n c e  o f  g rowing  p e r t u r b a -  
t i o n s  a t  low Reyno lds  numbers i s  due t o  the  p r e s e n c e  o f  e l a s t i c  b o u n d a r i e s :  a ,  § 0 a t  K § 
( s o l i d  w a l l s )  and t h i s  u n s t a b l e  r e g i o n  d i s a p p e a r s .  

For  Re << 1 one must a l s o  a l l o w  f o r  t a n g e n t i a l  d i s p l a c e m e n t s  and (7) and (8) must be 
used  i n s t e a d  o f  (9) and (10 ) .  I n  t h i s  c a s e  qo  does n o t  change  and co a n d  c ,  have  t h e  form 

Co = Y"(l). (a. sh 2z - -  2a~); (18) 
�9 2 ; 2 r/, c~ = lc0, (a b ) {(0:625 - -  ch 2 a) sh 2~ + ( l .5a - -  2a S, 3) sh ~" a -" 

+ 9 sh e 2~/(16a) + 0.5~ -, (0.375~ sh e 2u + ~s sh ~- a + 
I i ] ' ~ i  - -  T O . 2 5 a ~ s h 2 a ) c o  ~ ~ L ( c o ) c h 2 ~  T ~ z ( ;  ,c o s h 2 a ) ( a ~ - L l  (co) -~coch"- t z ) } ,  (19) 

Ll(c0) = a~(po~:Co - -  Kl'cn). 

For  P o i s e u i l l e  f l o w  the  c h a r a c t e r  o f  t he  p e r t u r b a t i o n s  does  n o t  change  q u a l i t a t i v e l y ,  
a l t h o u g h  t h e  v a l u e  o f  a ,  does become d i f f e r e n t .  

As c a l c u l a t i o n s  show, f o r  K ) 1 i n  the  f i r s t  c a s e  t he  f i r s t  two terms o f  t he  s e r i e s  (14) 
d e t e r m i n e  c a c c u r a t e l y  enough f o r  Re < 0 . 1 - 0 . 5 ,  w h i l e  i n  t he  s econd  c a s e  t h e y  d e t e r m i n e  c 
a c c u r a t e l y  enough  f o r  Re ~< 10 - s .  S i n c e  t h e  n e u t r a l  c u r v e s  o b t a i n e d  ~ t h  and w i t h o u t  a l l o w -  
ance  f o r  TxT p r a c t i c a l l y  c o i n c i d e  f o r  t h e  g i v e n  K, even  w i t h  Re : 0 .05 -0" .1 ,  i t  i s  c o n v e n i e n t  
t o  use  Eqs .  (16) and (17) f o r  an a p p r o x i m a t e  d e t e r m i n a t i o n  o f  t h e  n e u t r a l  c u r v e  f o r  s m a l l  b u t  
f i n i t e  Re ( 0 . 1 - 0 . 5 ) .  

I f  Zyy i s  n o t  t a k e n  i n t o  a c c o u n t  and (11) i s  used  i n s t e a d  o f  ( 9 ) ,  t hen  t he  f o l l o w i n g  e x -  
p r e s s i o n s  are obtained forgo, co, and ca: 

~o = ch ~y; 

c o = -- l"(t) cth ~,'~; 

e I = - -  ic~/(czV' sh 2u) {~ -- 1.5 sh ~ ~z/a -" t .5  th ~ -~ (~ -- 0.5 sh 2~) L (%)}. 

I n  c o m p a r i n g  ( 2 0 ) - ( 2 2 )  wir_h ( 1 5 ) - ( 1 8 )  i t  i s  seen  t h a t  t h e  b e h a v i o r  o f  t h e  p e r t u r b a t i o n s  
changes  q u a l i t a t i v e l y .  The r e g i o n  o f  i n s t a b i l i t y  a l s o  c o r r e s p o n d s  t o  s m a l l  a ,  bu t  i n  t h i s  
c a s e  t h e  p e r t u r b a t i o n s  p r o p a g a t e  downs t ream (co > 0 ) .  

E v i d e n t l y  Tyy c a n n o t  be n e g l e c t e d  f o r  s m a l l  R e y n o l d s  numbers .  Us ing  t h e  r e s u l t s  o b t a i n e d  
f o r  s m a l l  Re w i t h  and w i t h o u t  a l l o w a n c e  f o r  Tyy,  one i s  a l s o  a b l e  to  f i n d  p e r t u r b a t i o n s  f o r  
which  t he  form o f  the  n e u t r a l  c u r v e  e s s e n t i a l l y  depends  on w h e t h e r  (9) o'r ( l l )  i s  t a k e n  as  
t he  b o u n d a r y  c o n d i t i o n ,  even  in  t he  c a s e  o f  l a r g e  Re when the  v i s c o u s  f o r c e s  a c t i n g  on the  
e l a s t i c  b o u n d a r y  a r e  u s u a l l y  n e g l e c t e d  [ 3 - 5 ] .  

For  f i n i t e  Re t h e  b o u n d a r y  p r o b l e m  ( 6 ) ,  ( 9 ) ,  ( 1 0 ) ,  (12) was s o l v e d  n u m e r i c a l l y  by t h e  
d e t e r m i n a n t  method [ 9 ] .  The main r e s t r l t s  were  r e p r o d u c e d  u s i n g  t h e  d i f f e r e n t i a l  t r i a l - r u n  

( 2 0 )  

(21) 

(22) 
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0 12 2~ Jff #8 " 80 7 2  Re '/J 

Fig. 2 

method [i0]. The difference in the wave numbers of the neutral perturbations calculated by 
these two methods hardly exceeded the assigned accuracy for the determination of ~. The 
critical Reynolds number Re, found for a channel with rigid walls agrees well with that pre- 
sented in [Ii] (see Table i). 

For the variants presented below the inertia of the plates can be neglected and their 
other properties can be characterized by the one parameter K. The calculations show that 
witha decrease in K the region of instability of Tollmien-Schlichting waves (region I) shifts 
towardsmaller wave numbers and larger Reynolds numbers. For small enough K this region is 

...... closed. 

If (~'ly=• = 0 is taken instead of (i0) as the boundary condition, as is done in [5], 
then the behavior of Re, changes qualitatively -- Re, also decreases with a decrease in K. 

The perturbations, which move upstream for small Re, begin to propagate downstream at 
large enough Reynolds numbers. Therefore, at some ~ and Re their phase velocity is reduced 
to zero. It is seen from (5) that for such perturbations the departure of the points of the 
boundary from the unperturbed position will either increase (decrease) with time, if a lies 
in the region of instability (stability), or remain constant if ~ lies on a neutral curve. 
In the latter case the perturbed flow will be steady. The Reynolds number at which such a 
steady perturbation exists increases with an increase in K. 

The region of growing perturbations, determined with the help of (15)-(17) for small Re, 
is called region II. 

In Fig. 2 the neutral curves i and 2 bound regions I and II, respectively, for a plate 
with K = 1.39. The boundaries of region I for plates with K = = and 3 (curve 3 and 4) are 
given for comparison. Region II decreases with an increase in K, the minimum distance between 
regions I and II also decreases, and at large enough K they merge. 

If Tyy is neglected and (ii) is used instead of (9) then a new region of instability ap- 
pears, reglon III, determined from (20)-(22) for small Re, while region II disappears. There- 
fore, in the case when regions I and II merge, the closure of region I occurs when Tyy is 
neglected. ]But if these regions are separate then the location of region I and the phase 

~9 

~8 

~J 

o 
- f  o f 2 J 4~ 5 5 7 LgRs 

Fig. 3 
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velocity of the neutral perturbations at its boundary are hardly changed when (ii) is used. 
For region III the velocity of propagation of the neutral perturbations is positive for all 
Re. 

The neutral curves for a plate with K = ii. II are given in Fig. 3. In this case regions 
I and II merge (curve I), closure of region I along the line 2 occurs when Tyy is neglected, 
and the curve 3 is the boundary of region III. The corresponding functions of the phase 
velocities are presented in Fig. 4. 

The author thanks V. E. Nakoryakov for the statement of the problem and helpful discus- 
sions, M. Kh. Pravdina for help in compiling the program, V. V. Cherkashin for making calcula- 
tions, and I. R. Shreiber for useful comments on this work. 
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VISCOSITY OF A DILUTE SUSPENSION OF RIGID SPHERICAL PARTICLES 

IN A NON-NEWTONIAN FLUID 

Yu. I. Shmakov and L. M. Shmakova UDC 532.135 

Consider the perturbations introduced by a rigid spherical particle of radius a suspended 
in a non-Newl:onian fluid flow having a parallel velocity gradient 

vx = --(q/2)x, .  vv = - - (q/2)g,  v~ = qz (i) 

a n d  s a t i s f y i n g  t h e  O s t w a l d - - D e v i l l e  l a w  

P = - - P E + m ( l / 2 ) ( n - i ) / 2 S .  (2) 

where Vx, Vy~ v z are the velocity components in a Cartesian coordinate system Oxyz with ori- 
gin at the center of the particle; q is the constant; P is the stress tensor; S is the strain 

rate tensor with components Sij = ~vi/3x j + ~vj/3xi, i, j = i, 2, 3; I is the second invari- 

ant of the tensor S; p is the pressure, E is the unit tensor, m is the consistency index; and 
n is the index of non-Newtonian behavior. 

Transforming to a spherical coordinate system (r, 8, ~), we introduce the stream func- 
tion ~(r, e), which is related to the velocity components by the expressions 

t o~ l o~ ( 3 )  
V r =  r2s in0  0 9 '  ~0 ~ r s i n 0  0--7"" 

Now the equations of motion for a power-law fluid are written as follows, neglecting.inertial 
forces (the generalized Reynolds number with respect to the particle is small): 

n- 1 
Op [ / )  2 [ ~ O n - -  [ ( 3Vr Oln[ t ( 0 UO, [ OOr" ] OIn['[] 
O~7=m(V,', k " r~s in0  ~ E 2 ~ @  " @ Or Or ] 7 \r-5-i'r'7-~ ; ~J--gg--j]' 

~-I (4) 

where 

E 2 _  0 z sinO 0 ( i  ~ 0 )  
0~'~ ~ r" O0 s - i - ~  ' 

a n d  t h e  boundary c o n d i t i o n s  f o r  t h e  p r o b l e m  a s s u m e  t h e  f o r m  

v0 ----v r = 0 at r = a ;  ( 5 )  

v. = (qr/2)(2 cos"0 - - s in~O) ,  v0 = --(3qr/2) s in  0 co~ 0 as r --~ co. 

Let (n --!)/2 << I (the dispersion medium differs only slightly from a Newtonian fluid). 
Equations (4) can be linearized in this case. Transforming in (4) and (5) to the dimension- 
less variables r = r/a, v r = Vr/aq, v 8 = vs/aq, p = p/p= (p~ is the freestream pressure), ~ = 
~/a3q, ~ = I / 3 q  2 ,  we look for a solution of problem (4)-(5) in the form of asymptotic expan- 
sions in powers of the small parameter ~ = (n- 1)/2: 

~ =*0 + ~'i + ~_ + �9 . , 

P = P o - -  spl =- ~"p~ + . . . ,  

Kiev. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 
81-85, September-October, 1977. Original article submitted August 5, 1976. 
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